

全球领先的通用人形机器人研发商

致力于打造可量产的机器人产品与生态平台

关于我们

PNDbotics 作 人形机器人 域的先 ,致力于构建一个通用人形机器人底 技 平台,以支持下一代人形机器人的开 、 和构 建。我 具 全 自主研 能力,从高度模 化的 行器硬件到机器人的构型 ,从先 的运 控制算法到真 数据的采集,全方 位推 机器人技 的突破。

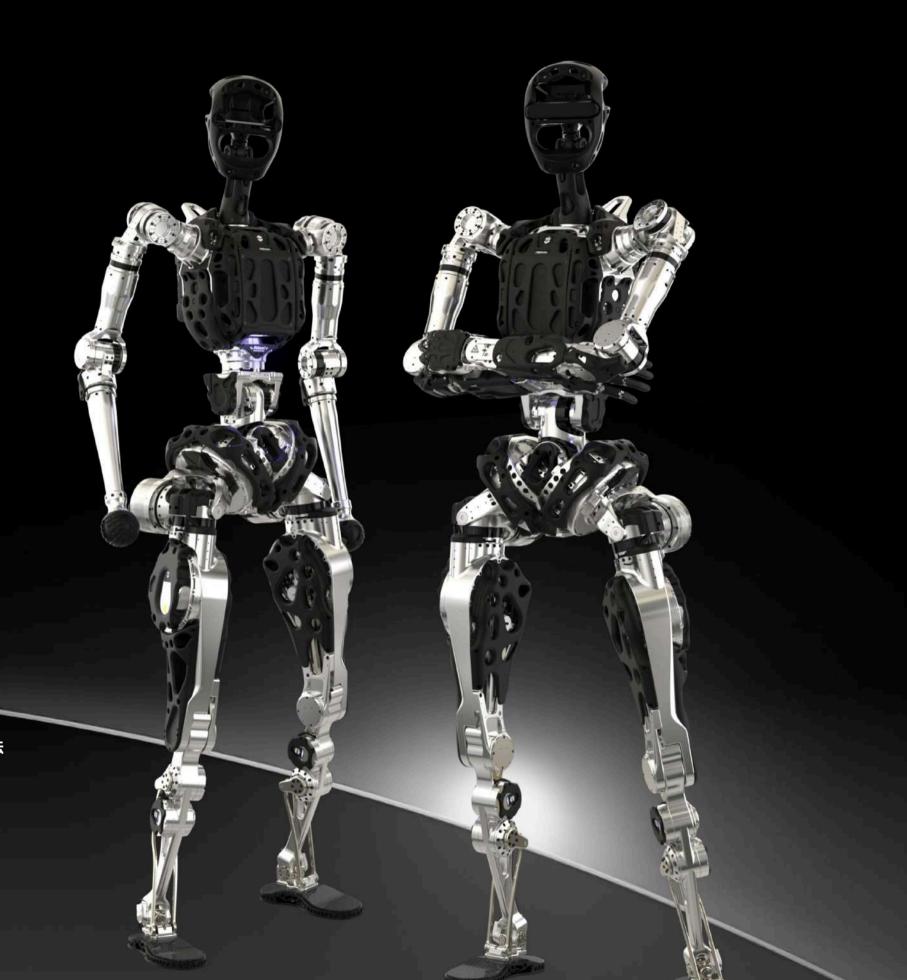
使命

我们致力于构建一个高效、全面的人形机器人平台,简化 AI 机器人的开发、模拟和部署过程,进一步推动机器人技术和具象 AI 领域的突破。

智能制造中心

依托于数十年的机器人技术积累,我们建立了智能制造中心,实现了从核心组件(包括电机、驱动器、减速器)到机器人关节和本体的全链条自主研发、生产与销售。目前,我们已成功完成多个高难度的人形机器人运动控制项目,推出了机器人控制器(RCU)、电池管理系统 BMS、一体化模块化执行器等核心部件。

人形机器人


Adam

■ **首款高度类人的髋部设计** 在复杂任务中,Adam 也能运动自如

▶ 高集成化、模块化的 QDD 驱动器 全自主研发,关节峰值扭矩达340N·m

■ 采用先进的深度强化学习 高鲁棒性且便于快速迭代

■ 轻松部署基于深度强化学习(DRL)的控制算法 缩小仿真与实机的差距

身高

167cm

体重

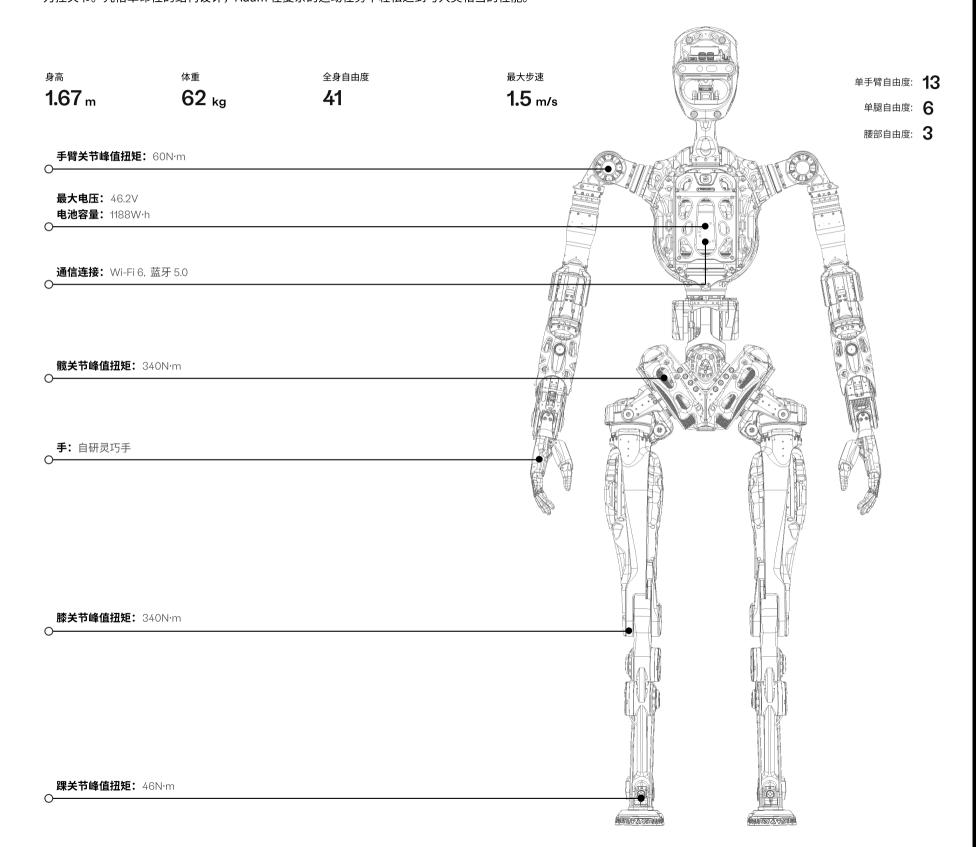
60kg / 62kg

关节峰值扭矩

340N·m

最大步速

1.5m/s


续航时间

4h*

*仅在0.5m/s的运动控制条件

人形机器人 Adam

Adam 全身由41个准直驱力控柔性执行器构成,具有高度仿生的躯干构型。腿部采用了4个业界最高扭矩密度、7速比高灵敏度准直驱力控关节。凭借革命性的结构设计,Adam 在复杂的运动任务中轻松达到与人类相当的性能。

由开发者打造 为开发者而生

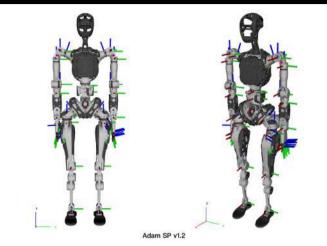
全自研的通信网络

全身采用全栈自研高实时性 PND-Network 通信网络,保证机器人的高动态性和通信可靠性。

模块化的硬件架构

PND 执行器是一款集标准化、模块化、一体化、高稳定性等特点的硬件架构,采用独特且领先的核心技术,专为机器人应用而设计。

革命性的结构设计


Adam 拥有与人类相似的身形和大小,能够实现类人的运动控制,在复杂的运动任务中轻松地与人类的表现相匹配。

基于强化学习的全身控制

采用最先进的深度强化学习(DRL),为开发者提供 NVIDIA Isaac Gym 训练环境,以开发个性化算法。

二次开发

技术参数

机器人名称	Adam Lite	Adam Standard	Adam SP		
身高	1.67m	1.67m	1.67m		
体重	60kg	60kg	62kg		
全身自由度	25 自由度	29 自由度	41 自由度		
单腿自由度	髋关节x3+膝关节x1+踝关节x2=6	髋关节x3+膝关节x1+踝关节x2=6	髋关节x3 + 膝关节x1 + 踝关节x2 = 6		
单手臂自由度	肩关节x3+肘关节x1+小臂关节x1=5	肩关节x3 + 肘关节x1 + 小臂关节x1 + 手腕关节x2=7	肩关节x3 + 肘关节x1 + 小臂关节x1 + 手腕关节x2 + 灵巧手指x6=13		
腰自由度	3 自由度	3自由度	3自由度		
关节单元极限扭矩	膝关节约 340N·m, 髋关节约 340N·m, 踝关节约 46N·m, 手臂关节约 60N·m	膝关节约 340N·m, 髋关节约 340N·m, 踝关节约 46N·m, 手臂关节约 60N·m	膝关节约 340N·m, 髋关节约 340N·m, 踝关节约 46N·m, 手臂关节约 60N·m		
行走速度	最大1.5m/s	最大1.5m/s	最大1.5m/s		
电池	电池容量1188W·h, 最大电压46.2V, 最大输出电流25A	电池容量1188W·h, 最大电压46.2V, 最大输出电流25A	电池容量1188W·h, 最大电压46.2V, 最大输出电流25A		
通信连接	Wi-Fi 6,蓝牙5.0,有线网口	Wi-Fi 6,蓝牙5.0,有线网口	Wi-Fi 6,蓝牙5.0,有线网口		
控制和感知算力	高鲁棒性自研WBC(全身动力学控制) +MPC(模型预测)控制算法, 机器人动态平衡	高鲁棒性自研WBC(全身动力学控制) +MPC(模型预测)控制算法, 机器人动态平衡	高鲁棒性自研WBC(全身动力学控制) +MPC(模型预测)控制算法, 机器人动态平衡		
机器人小脑	NUC12WSKi7,用于机器人运动控制	NUC12WSKi7,用于机器人运动控制	NUC12WSKi7,用于机器人运动控制		
机器人大脑	-	NVIDIA Jetson Orin NX 16GB 嵌入式电脑, 用于AI计算,视觉处理,上层决策	NVIDIA Jetson Orin NX 16GB 嵌入式电脑, 用于AI计算,视觉处理,上层决策		
感知传感器配置	-	Intel Realsense D455深度相机	Intel Realsense D455深度相机		
头	_	✓	✓		
	球形手	-	灵巧手		

准直驱 PSA 系列 执行器

准直驱 PSA 系列执行器巧妙地集成了电机、PND-Network 通信控制器,伺服驱动和减速器,提供了广泛的减速比参数可供使用者选择。

PSA 系列执行器和 RCU

重构机器人技术

我们致力于为人形机器人行业打造一套通用标准,采用简洁、标准化、模块化和集成化的高度稳定的执行器硬件架构,构建人形机器人。

型号	PND-20-08- 50-S	PND-30-14A- 50-S	PND-50-14A- 50-S	PND-50-52- 30-P	PND-60-17- 50-S	PND-80-20- 30-S	PND-130-92- 7-P
图示	-		10 . 10				0 . 0
电压/V	46.5	46.5	46.5	46.5	46.5	46.5	46.5
减速比	51	51	51	30	51	31	7
额定转矩/N·m	2.1	6.5	25.0	17.6	28.5	42.0	113.0
峰值转矩/N·m	6.4	17.5	60.0	46.0	89.0	120.0	340.0
额定转速/RPM	44	40	41	70	40	70	115
最大转速/RPM	47	47	47	80	47	80	180
转矩常数 N·m/A	1.4	2.6	2.5	1.7	2.7	2.6	1.6
重量/Kg	0.2	0.4	0.6	0.7	1.0	1.5	4.0
额定输出机械功率/W	9.7	27.2	109.9	128.3	121.0	300.5	1102.6
最大输出机械功率/W	26.4	49.5	201.0	264.9	214.3	628.3	/
通信网络	PND-Network	PND-Network	PND-Network	PND-Network	PND-Network	PND-Network	PND-Network

机器人组件 关节层面的模块化

PNDbotics 执行器集成了电机、减速器、位置编码器、 伺服驱动器和通信单元,是快速构建现代机器人的基础。

可更换的后法兰 满足定制需求

电机的后法兰经过精心设计,可针对如需要安装轴承的应用进 行定制。

自主研发的机器人控制器(RCU)

以创新的集成设计,将电源管理、电池管理系统与全栈自主研发的高实时性 PND-Network 通信网络融为一体,具有高可靠性且易于使用。

自主构建的人形机器人平台 让机器人开发变得更简单

人形机器人平台极大简化了机器人训练和模拟的工作流程,将部署和开发周期时间 从几个月缩短到不到一周,直观地控制和监督机器人的每一个动作。

SDK 与软件

• 我们的软件开发工具包 (SDK) 功能完善,支持底层操作。配合 PDS、PMC 等丰富软件生态,大幅提升开发效率,从而降低研发成本。

强化学习支持

• PNDbotics 采用最先进的 DRL (深度强化学习)和模仿学习算法,使开发人员能够方便地使用 NVIDIA Isaac Gym 并行 DRL 训练环境和创建部署自己的算法。

